Neural Modelling of Ranking Data with an application to stated preference data Catherine KRIER
نویسندگان
چکیده
Although neural networks are commonly encountered to solve classification problems, ranking data present specificities which require adapting the model. Based on a latent utility function defined on the characteristics of the objects to be ranked, the approach suggested in this paper leads to a perceptron-based algorithm for a highly non linear model. Data on stated preferences obtained through a survey by face-to-face interviews, in the field of freight transport, are used to illustrate the method. Numerical difficulties are pinpointed and a Pocket type algorithm is shown to provide an efficient heuristic to minimize the discrete error criterion. A substantial merit of this approach is to provide a workable estimation of contextually interpretable parameters along with a statistical evaluation of the goodness of fit. The research underlying this paper is performed within the framework of the second Scientific Support Plan for a sustainable Development Policy (SPSP II) for the account of the Belgian State, Prime Minister's Office – Federal Science Policy Office (contract: CP/17/361). Financial support from the IAP research network no P5/24 of the Belgian Government (Federal Office for Scientific, Technical and Cultural Affairs) is also acknowledged. Comments by an anonymous referee and by several participants of seminars where this paper has been presented are gratefully acknowledged.
منابع مشابه
Application of artificial neural network and genetic algorithm to modelling the groundwater inflow to an advancing open pit mine
In this study, a hybrid intelligent model has been designed to predict groundwater inflow to a mine pit during its advance. Novel hybrid method coupling artificial neural network (ANN) with genetic algorithm (GA) called ANN-GA, was utilised. Ratios of pit depth to aquifer thickness, pit bottom radius to its top radius, inverse of pit advance time and the hydraulic head (HH) in the observation w...
متن کاملUNCERTAINTY DATA CREATING INTERVAL-VALUED FUZZY RELATION IN DECISION MAKING MODEL WITH GENERAL PREFERENCE STRUCTURE
The paper introduces a new approach to preference structure, where from a weak preference relation derive the following relations:strict preference, indifference and incomparability, which by aggregations and negations are created and examined. We decomposing a preference relation into a strict preference, anindifference, and an incomparability relation.This approach allows one to quantify diff...
متن کاملFuzzy Data Envelopment Analysis Approach for Ranking of Stocks with an Application to Tehran Stock Exchange
The main goal of this paper is to propose a new approach for efficiency measurement and ranking of stocks. Data envelopment analysis (DEA) is one of the popular and applicable techniques that can be used to reach this goal. However, there are always concerns about negative data and uncertainty in financial markets. Since the classical DEA models cannot deal with negative and imprecise values, i...
متن کاملPrediction of Deformation of Circular Plates Subjected to Impulsive Loading Using GMDH-type Neural Network
In this paper, experimental responses of the clamped mild steel, copper, and aluminium circular plates are presented subjected to blast loading. The GMDH-type neural networks (Group Method of Data Handling) are then used for the modelling of the mid-point deflection thickness ratio of the circular plates using those experimental results. The aim of such modelling is to show how the mid-point de...
متن کاملEvaluation and ranking of suppliers with fuzzy DEA and PROMETHEE approach
Supplier selection is a multi-Criteria problem. This study proposes a hybrid model for supporting the suppliers’ selection and ranking. This research is a two-stage model designed to fully rank the suppliers where each supplier has multiple Inputs and Outputs. First, the supplier evaluation problem is formulated by Data Envelopment Analysis (DEA), since the regarded decision deals with uncertai...
متن کامل